题目内容
如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=( )
A. B. 2 C. 2 D. 1
已知二次函数的最大值是__________
以下四家银行的行标图中,是轴对称图形的有( )
A. 1个 B. 2个 C. 3个 D. 4个
在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.
(1)求证:AC与⊙O相切.
(2)若BC=6,AB=12,求⊙O的面积.
如图,在等边△ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长度为_____.
下列说法正确的是( )
A. 一个游戏中奖的概率是 ,则做100次这样的游戏一定会中奖
B. 为了了解全国中学生的心理健康状况,应采用普查的方式
C. 一组数据0,1,2,1,1的众数和中位数都是1
D. 若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定
在平面直角坐标系xOy中,抛物线y=mx2+6mx+n(m>0)与 x轴交于A,B两点(点A在点B左侧),顶点为C,抛物线与y轴交于点D,直线BC交y轴于E,且△ABC与△AEC这两个三角形的面积之比为2∶3.
(1)求点A的坐标;
(2)将△ACO绕点C顺时针旋转一定角度后,点A与B重合,此时点O恰好也在y轴上,求抛物线的解析式.
如图,将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,若BE=1,CE=2,则折痕FG的长度为( )
A. B. 2 C. D.
—个多边形每个外角都是60°,此多边形一定是_____边形.