题目内容
如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是( )
A. 60 m2 B. 63 m2 C. 64 m2 D. 66 m2
烟花厂为2018年春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=+12t+0.1,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为_____s.
如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?
对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.
(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;
(2)函数y=2x2-bx.
①若其不变长度为零,求b的值;
②若1≤b≤3,求其不变长度q的取值范围;
(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .
如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为 .
在平面直角坐标系中,点P(-1,2)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A,C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ.连接QP,QP与BC交于点E.QP延长线与AD(或AD延长线)交于点F.
(1)连接CQ,求证:CQ=AP;
(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求出当x为何值时,CE=BC;
(3)猜想PF与EQ的数量关系,并证明你的结论.
如图,在平面直角坐标系中,四边形ABCD的各顶点坐标分别为A(1,0),B(2,0),C(2,2),D(0,1),四边形BFGH的各顶点坐标分别为F(4,0),G(4,4),H(0,2),则下列说法正确的是( )
A. 四边形ABCD与四边形BFGH相似但不位似
B. 四边形ABCD与四边形BFGH位似但不相似
C. 四边形ABCD与四边形BFGH位似,且相似比为1∶
D. 四边形ABCD与四边形BFGH位似,且相似比为1∶2
电影票上的“2排5号”如果用(2,5)表示,那么“5排2号”应该表示为( )
A. (2,5) B. (5,2) C. (-5,-2) D. (-2,-5)