题目内容
【题目】已知某电脑公司有A型,B型,C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C型每台2500元 ,某市实验中学计划将100500元钱全部用于从该电脑公司购进电脑共36台
(1)若全部购进的是两种不同型号的电脑,请你设计出几种不同的购买方案方案供该校选择,并说出理由;
(2)能否同时购进三种型号的电脑,若能,请设计出购买方案;若不能,请说明理由.
【答案】(1)有两种方案供该校选择,第一种方案是购进A型电脑3台和C型电脑33台;第二种方案是购进B型电脑7台和C型电脑29台.(2)不能同时购进三种不同品牌的电脑.
【解析】
(1)分三种情况:一是购买A+B=36,A的单价×数量+B的单价×数量=100500;二是购买A+C=36,A的单价×数量+C的单价×数量=100500;三是购买B+C=36,B的单价×数量+C的单价×数量=100500;
(2)先假设能同时购进三种型号的电脑,列出方程组求解即可.
(1)设从该电脑公司购进A型电脑x台,购进B型电脑y台,购进C型电脑z台,则可分以下三种情况考虑:
(1)只购进A型电脑和B型电脑,依题意可列方程组
解得
.不合题意,应该舍去.
(2)只购进A型电脑和C型电脑,依题意可列方程组
解得
.
(3)只购进B型电脑和C型电脑,依题意可列方程组
解得
.
答:有两种方案供该校选择,第一种方案是购进A型电脑3台和C型电脑33台;
第二种方案是购进B型电脑7台和C型电脑29台.
(2)设从该电脑公司购进A型电脑a台,购进B型电脑b台,购进C型电脑c台,根据题意得,
消去c得,3500a+1500b=10500
∵a,b均为正整数,
∴a=3,b=0,
∵a+b+c=36,
∴c=33,
故不能同时购进三种型号的电脑.
【题目】为了加强市民的节水意识,合理利用水资源,某市采用阶梯收费的调控手段以达到节水的目的,该市自来水收费价目表如下:
每月用水量 | 价格 | 注:水费按月结算,每户每月须缴纳5元污水处理费. |
不超出6m3的部分 | 2元/m3 | |
超出6m3不超出10m3的部分 | 3元/m3 | |
超出10m3的部分 | 5元/m3 |
若某户居民1月份用水8m,则应缴费2×6+3×(8-6)+5=23(元)
(1)若用户4月份共用水9.5m3,则需缴费 元;
(2)若该户居民某月缴费54元,则该户居民该月用水多少吨?