题目内容
如图,正方形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.
求证:四边形OBEC是正方形.
如图1,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B′C′D′的位置,使B′为BD中点,连接AB′,C′D,AD′,BC′,如图2.
(1)求证:四边形AB′C′D是菱形;
(2)求四边形ABC′D′的周长.
图1 图2
在 Rt△ABC 中,∠C=Rt∠,AC=2BC,AB=5,D、E 分别在 AB、AC 上,且 AE ?,DE∥BC.
(1)如图(1),将△ADE 沿射线 DA 方向平移,得到△ A1 D1 E1 ,当 AD1 多大时,四边形 AA1 E1 E 为菱形;
(2)如图(2),将△ADE 绕 A 点顺时针旋转? 度( 00 ? ? ? 1800 )得到△AD2E2
①连结 CE2 , BD2 ,求:的值;
②连结 CE2 , BE2 若△ ACE2 是直角三角形,求:△ ABE 2 的面积.
一元二次方程x2-8x=48可表示成(x-a)2=48+b的形式,其中a,b为整数,求a+b之值为何( )
A. 20 B. 12 C. -12 D. -20
如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转α°,分别交直线BC、AD于点E、F.
(1)当α= °,四边形ABEF是平行四边形;
(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形.
①α= °,构造的四边形是菱形;
②若构造的四边形是矩形,求出该矩形的面积.
如果关于x的一元二次方程ax2=b(ab>0)的两个根分别是x1=m+1与x2=2m﹣4,那么的值为_____.
计算:﹣×=_____.
如图,△ABE和△ACD是△ABC分别以AB、AC为对称轴翻折180°形成的,若∠1:∠2:∠3=29:4:3,则∠的度数为_______.
一个公共房门前的台阶高出地面1.2 m,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )
A. 斜坡AB的坡度是10° B. 斜坡AB的坡度是tan10°
C. AC=1.2tan10° m D. AB=m