题目内容
90
度.分析:根据菱形的性质,知:∠C=∠A=72°;由于∠1、∠2、∠3所在的三角形都是等腰三角形,可根据等腰三角形的性质和三角形外角的性质进行求解.
解答:
解:∵四边形ABCD是菱形,
∴∠A=∠C=72°;
∵∠6=∠C=72°,
∴∠3=180-2×72°=36°;
∵∠6=∠2+∠5=2∠2=72°,
∴∠2=36°;
∵∠2=∠1+∠4=2∠1=36°,
∴∠1=18°;
∴∠1+∠2+∠3=36°+36°+18°=90°.
∴∠A=∠C=72°;
∵∠6=∠C=72°,
∴∠3=180-2×72°=36°;
∵∠6=∠2+∠5=2∠2=72°,
∴∠2=36°;
∵∠2=∠1+∠4=2∠1=36°,
∴∠1=18°;
∴∠1+∠2+∠3=36°+36°+18°=90°.
点评:本题主要考查菱形的性质、等腰三角形的性质以及三角形外角的性质.
练习册系列答案
相关题目