题目内容

如图,△ABC中,∠ABC=∠ACB=80°,D、E分别是AB、AC上的点,∠DCA=30°,∠EBA=20°,求∠BED的度数.

解:作∠BCF=60°,分别交AB、BE于点F、G,连接EF,DG,
∵∠ABC=80°,∠EBA=20°,
∴∠GBC=80°-20°=60°,
∴△BGC为等边三角形,
∵∠DCA=30°,∠ACB=80°,
∴∠DCF=∠BCF-(∠ACB-∠DCA)=60°-(80°-30°)=10°,∠FCE=∠DCA-∠DCF=30°-10°=20°,
∴∠EBA=∠FCE,
又∵∠ABC=∠ACB=80°,
∴AB=AC,
在△ABE与△ACF中,
∴△ABE≌△ACF(ASA),
∴BE=CF,
∵BG=CG=BC(等边三角形的三边相等)
∴FG=GE,
∴△FGE为等边三角形,
∴∠EFG=∠CBG=60°,
∴EF∥BC,
∴∠AFE=∠ABC=80°,
∴∠DFG=180°-80°-60°=40°①,
在△BCD中,∠BDC=180°-∠ABC-∠BCD=180°-80°-(80°-30°)=50°,
∴∠BCD=180°-50°-80°=50°,
∴∠BDC=∠BCD,
∴BC=BD,
∴BD=BC=BG,
在△BGD中,∠BGD=(180°-20°)=80°,
∴∠DGF=180°-∠BGD-∠EGF=180°-80°-60°=40°②,
∴∠DFG=∠DGF,
∴DF=DG,
在△DFE与△DGE中,
∴△DFE≌△DGE(SSS),
∴∠FED=∠BED,
∵∠GEF=60°(等边三角形的每一个角都等于60°),
∴∠BED=∠GEF=30°.
故答案为:30°.
分析:作∠BCF=60°,分别交AB、BE于点F、G,构造出等边三角形△BCG,可以求出∠DCF与∠FCE的度数,并利用角边角证明△ABE与△ACF全等,根据全等三角形对应边相等得到BE=CF,然后求出△FGE也是等边三角形,再根据等边三角形的角的度数证明EF∥BC,推出∠AFE=80°,根据平角等于180°推出∠DFG=40°,再根据角的度数可以得到BD=BC=BG,然后推出∠DGF=40°,根据等角对等边的性质可得DG=DF,从而利用边边边证明△DFE与△DGE全等,根据全等三角形对应角相等可得∠DEF=∠BED,即可得解.
点评:本题考查了全等三角形的判定与性质,等边三角形的判定与性质,巧妙运用题中的角的度数的关系并作出辅助线是解题的关键,难度较大,对同学们的能力要求较高.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网