题目内容

如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).
(1)求经过A、B、C三点的抛物线的解析式;
(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;
(3)若抛物线的顶点为P,连接PC、PD,判断四边形CEDP的形状,并说明理由.

【答案】分析:(1)由A、B、C三点的坐标适合抛物线的解析式,从而用待定系数法求出抛物线的解析式;
(2)联立直线AD、BC的解析式,求出交点E的坐标;
(3)四边形CEDP为菱形,可根据P、C、E、D四点的坐标,证四边形CEDP的对角线互相垂直平分.
解答:解:(1)由于抛物线经过点C(0,3),
可设抛物线的解析式为y=ax2+bx+3(a≠0),

解得
∴抛物线的解析式为.(4分)

(2)∵D=C=3,
∴D=4
即可得D的坐标为D(4,3),(5分)
直线AD的解析式为
直线BC的解析式为
求得交点E的坐标为(2,2).(8分)

(3)连接PE交CD于F,
P的坐标为(2,4),
又∵E(2,2),C(0,3),D(4,3),
∴PF=EF=1,CF=FD=2,且CD⊥PE,
∴四边形CEDP是菱形.(12分)
点评:此题考查了二次函数解析式的确定、函数图象交点坐标的求法以及菱形的判定方法,难度不大,细心求解即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网