题目内容

如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5)、B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为


  1. A.
    -1≤x≤9
  2. B.
    -1≤x<9
  3. C.
    -1<x≤9
  4. D.
    x≤-1或x≥9
A
分析:先观察图象确定抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标,即可求出y1≥y2时,x的取值范围.
解答:由图形可以看出:抛物线y2=ax2+bx+c(a≠0)和一次函数y1=kx+n(k≠0)的交点的横坐标分别为-1,9,
当y1≥y2时,x的取值范围正好在两交点之内,即-1≤x≤9.
故选A.
点评:本题考查了二次函数与不等式(组),此类题可采用“数形结合”的思想进行解答,这也是速解习题常用的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网