题目内容
【题目】公元9世纪,阿拉伯数学家阿尔花拉子米在他的名著《代数学》中用图解一元二次方程,他把一元二次方程
写成
的形式,并将方程左边的
看作是由一个正方形(边长为
)和两个同样的矩形(一边长为
,另一边长为
)构成的矩尺形,它的面积为
,如图所示。于是只要在这个图形上添加一个小正方形,即可得到一个完整的大正方形,这个大正方形的面积可以表小为:
____
_______ ,整理,得
,因为
表示边长,所以
___________.
![]()
【答案】1 1 5
【解析】
由图可知添加一个边长为1的正方形即可补成一个完整的正方形,由此即可得出答案.
解:由图可知添加一个边长为1的正方形即可补成一个面积为36的正方形,
故第一个空和第二个空均应填1,
而大正方形的边长为x+1,
故x+1=6,
x=5,
故答案为:1,1,5.
练习册系列答案
相关题目