题目内容
如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的俯视图和左视图的面积之和是________.
在一快递仓库里堆放着若干个相同的正方体快递件,管理员将这堆快递件的三视图画了出来,如图所示,则这正方体快递件共有( )
A. 9箱 B. 10箱
C. 11箱 D. 12箱
如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD=9,AE⊥BC于E,AE=8,则CD的长为_____.
甲、乙两人在相同情况下各射靶10次,环数的方差分别是S2甲=1.4,S2乙=1.2,则射击稳定性高的是______.
把下列各数表示的点画在数轴上,并用“”把这些数连接起来,然后指出哪些是负数、哪些是分数、哪些是非负整数.,,,,,
如图,在平面直角坐标系中,抛物线y =ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.点P、Q分别是AB、BC上的动点,当点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动.设P、Q同时运动的时间为t秒(0<t<2).
(1)求抛物线的表达式;
(2)设△PBQ的面积为S ,当t为何值时,△PBQ的面积最大,最大面积是多少?
(3)当t为何值时,△PBQ是等腰三角形?
已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 .
如图,直线与轴、轴分别交于、两点,抛物线经过、两点,与轴的另一个交点为,连接.
(1)求抛物线的解析式及点的坐标;
(2)点 在抛物线上,连接 ,当 时,求点的坐标;
(3)点从点出发,沿线段由向运动,同时点从点出发,沿线段由向运动, 、的运动速度都是每秒个单位长度,当点到达点时,、同时停止运动,试问在坐标平面内是否存在点,使、运动过程中的某一时刻,以、、、为顶点的四边形为菱形?若存在,直接写出点的坐标;若不存在,说明理由.
若a:b:c=2:3:7,且a-b+3=c-2b , 则c=( )
A. 7 B. 63 C. 10.5 D. 5.25