题目内容

3.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG的长.

分析 (1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;
(2)利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;

解答 解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,
∵将△ADE沿AE对折至△AFE,
∴AD=AF,DE=EF,∠D=∠AFE=90°,
∴AB=AF,∠B=∠AFG=90°,
又∵AG=AG,
在Rt△ABG和Rt△AFG中,
$\left\{\begin{array}{l}{AG=AG}\\{AB=AF}\end{array}\right.$,
∴△ABG≌△AFG(HL);
(2)∵△ABG≌△AFG,
∴BG=FG,
设BG=FG=x,则GC=6-x,
∵E为CD的中点,
∴CE=EF=DE=3,
∴EG=3+x,
∴在Rt△CEG中,32+(6-x)2=(3+x)2,解得x=2,
∴BG=2.

点评 此题主要考查了勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网