题目内容
140
140
度.分析:首先连接OE,由∠ACB=90°,根据圆周角定理,可得点C在⊙O上,即可得∠EOA=2∠ECA,又由∠ECA的度数,继而求得答案.
解答:
解:连接OE,
∵∠ACB=90°,
∴点C在以AB为直径的圆上,
即点C在⊙O上,
∴∠EOA=2∠ECA,
∵∠ECA=2×35°=70°,
∴∠AOE=2∠ECA=2×70°=140°.
故答案为:140.
∵∠ACB=90°,
∴点C在以AB为直径的圆上,
即点C在⊙O上,
∴∠EOA=2∠ECA,
∵∠ECA=2×35°=70°,
∴∠AOE=2∠ECA=2×70°=140°.
故答案为:140.
点评:此题考查了圆周角定理.此题难度适中,解题的关键是证得点C在⊙O上,注意辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目