题目内容

目前节能灯在城市已基本普及,今年南京市面向农村地区推广,为相应号召,某商场计划购进甲、乙两种节能灯共1000只,这两种节能灯的进价、售价如下表:
进价(元/只)售价(元/只)
甲型2030
乙型4060
(1)如何进货,进货款恰好为28000元?
(2)如何进货,能确保售完这1000只灯后,获得利润为15000元?
考点:一元一次方程的应用
专题:
分析:(1)设商场购进甲种节能灯x只,则购进乙种节能灯(1000-x)只,根据两种节能灯的总价为28000元建立方程求出其解即可;
(2)设商场购进甲种节能灯a只,则购进乙种节能灯(1000-a)只,根据售完这1000只灯后,获得利润为15000元建立方程求出其解即可.
解答:解:(1)设商场购进甲种节能灯x只,则购进乙种节能灯(1000-x)只,由题意得
20x+40(1000-x)=28000,
解得:x=600.
则购进乙种节能灯1000-600=400(只).
答:购进甲种节能灯600只,购进乙种节能灯400只,进货款恰好为28000元;

(2)设商场购进甲种节能灯a只,则购进乙种节能灯(1000-a)只,根据题意得
(30-20)a+(60-40)(1000-a)=15000,
解得a=500.
则购进乙种节能灯1000-500=500(只).
答:购进甲种节能灯500只,购进乙种节能灯500只,能确保售完这1000只灯后,获得利润为15000元.
点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网