题目内容
如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y= 的图象经过点C(3,m).
(1)求菱形OABC的周长;
(2)求点B的坐标.
分解因式:m2+2m=_____.
阅读下面材料:随着人们认识的不断深入,毕达哥拉斯学派逐渐承认不是有理数,并给出了证明.假设是有理数,那么存在两个互质的正整数p,q,使得,于是,两边平方得p2=2q2 . 因为2q2是偶数,所以p2是偶数,而只有偶数的平方才是偶数,所以p也是偶数.因此可设p=2s,代入上式,得4s2=2q2 , 即q2=2s2 , 所以q也是偶数,这样,p和q都是偶数,不互质,这与假设p,q互质矛盾,这个矛盾说明, 不能写成分数的形式,即不是有理数.请你有类似的方法,证明不是有理数.
化简的结果是( )
A. B. C. 2 D.
9的立方根是( )
A. ±3 B. 3 C. ± D.
数轴上有三点A,B,C,且A,B两点间的距离是3,B,C两点的距离是1.若点A表示的数是﹣2,则点C表示的数是__.
如图,一把折扇展开后是一个扇形,其中圆心角为120°,OB=2,AB=3,则折扇纸面部分的面积为( )
A. 1 B. π C. 7 D. 7π
观察下列各式:, , …请你将发现的规律用含自然数n(n≥1)的代数式表达来_____________。
如图,山坡AB的坡角α为25°,坡的长度AB=480 m,求山坡的高度 h .