题目内容
如图,已知△ABC与△A′B′C′关于点O成中心对称图形,则下列判断不正确的是( )
A.∠ABC=∠A′B′C′B.∠BOC=∠B′A′C′
C.AB=A′B′ D.OA=OA
下列汽车标志中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
分解因式:a2﹣4a=_______________.
若x=﹣2,则代数式x2+1的值为_________.
一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )
A.50° B.60° C.70° D.80°
计算4﹣(﹣4)0的结果是( )
A.0 B.2C.3D.4
“中国梦”关系中国每个人的幸福生活.为展现新乡人追梦的风采,我市某中学举行“中国梦•我的梦”演讲比赛,赛后将所有参赛学生的成绩整理后分为A、B、C、D四个等级,并将结果绘制了如图尚不完整的统计图.请你根据统计图解答下列问题:
(1)此次参加演讲比赛的学生人数共有________名,在扇形统计图中,表示“D”等级的扇形的圆心角为________度,图中m的值为________;
(2)补全条形统计图;
(3)组委会决定从本次比赛获A等级的学生中,随机选出2名去参加市中学生演讲比赛.已知A等级中男生有1名.请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.
阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)求△CAB的铅垂高CD及S△CAB;
(3)抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.
已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( )
A.B.2πC.3πD.12π