题目内容
青少年视力水平的下降已经引起全社会的关注,某校为了了解初中毕业年级500名学生的视力情况,从中抽查了一部分学生视力,通过数据处理,得到如下频率分布表和频
率分布直方图:
| 分 组 | 频 数 | 频 率 |
| 3.95~4.25 | 2 | 0.04 |
| 4.25~4.55 | 6 | 0.12 |
| 4.55~4.85 | 25 | |
| 4.85~5.15 | ||
| 5.15~5.45 | 2 | 0.04 |
| 合 计 | 1.00 |
(1)填写频率分布表中未完成部分的数据;
(2)在这个问题中,总体是______,样本容量是______.
(3)请你用样本估计总体,可以得到哪些信息?(写一条即可)______.
解:(1)∵2÷0.04=50,25÷50=0.5,1-0.04-0.12-0.5-0.04=0.3,0.3×50=15,
∴第二列从上至下两空分别填15、50;第三列从上至下两空分别填0.5、0.3;
(2)在这个问题中,总体是初中毕业年级500名学生的视力情况,样本容量是50;
(3)该校初中毕业年级学生视力在4.55~4.85的人数最多,约250人.
故答案为:初中毕业年级500名学生的视力情况,50,该校初中毕业年级学生视力在4.55~4.85的人数最多,约250人.
分析:(1)本题需先根据视力在3.95~4.25段的频数是2,频率是0.04,得出数据总数,再由第三组的频数是25,计算出它的频率,然后根据频率总计是1.00,所以能求出在4.85~5.15的频率和频数,即可求出答案.
(2)本题根据已知条件得出总体,再结合图形即可求出样本容量.
(3)本题需先根据所给的数据和图形,即可任意写出一条信息符合条件即可.
点评:本题考查频数(率)分布直方图的能力和频数(率)分布表获取信息的能力;利用这些图形式,必须认真观察、分析、研究分布表才能作出正确的判断和解决问题.
∴第二列从上至下两空分别填15、50;第三列从上至下两空分别填0.5、0.3;
(2)在这个问题中,总体是初中毕业年级500名学生的视力情况,样本容量是50;
(3)该校初中毕业年级学生视力在4.55~4.85的人数最多,约250人.
故答案为:初中毕业年级500名学生的视力情况,50,该校初中毕业年级学生视力在4.55~4.85的人数最多,约250人.
分析:(1)本题需先根据视力在3.95~4.25段的频数是2,频率是0.04,得出数据总数,再由第三组的频数是25,计算出它的频率,然后根据频率总计是1.00,所以能求出在4.85~5.15的频率和频数,即可求出答案.
(2)本题根据已知条件得出总体,再结合图形即可求出样本容量.
(3)本题需先根据所给的数据和图形,即可任意写出一条信息符合条件即可.
点评:本题考查频数(率)分布直方图的能力和频数(率)分布表获取信息的能力;利用这些图形式,必须认真观察、分析、研究分布表才能作出正确的判断和解决问题.
练习册系列答案
相关题目
当今,青少年视力水平的下降已引起全社会的广泛关注,为了了解某初中毕业年级300名学生的视力情况,从中抽出了一部分学生的视力情况作为样本,进行数据处理,可得到的频率分布表和频率分布直方图
如下.
(1)填写频率分布表中部分数据;
(2)在这个问题中,总体是 ;所抽取的样本的容量是 ;
(3)若视力在4.85以上属正常,不需矫正,试估计毕业年级300名学生中约有多少名学生的视力不需要矫正.
| 分组 | 频数 | 频率 |
| 3.95~4.25 | 2 | 0.04 |
| 4.25~ | 6 | 0.12 |
| ~4.85 | 23 | |
| 4.85~5.15 | ||
| 5.15~5.45 | 1 | 0.02 |
| 合计 | 1.00 |
(2)在这个问题中,总体是
(3)若视力在4.85以上属正常,不需矫正,试估计毕业年级300名学生中约有多少名学生的视力不需要矫正.