题目内容
学习了“幂的运算”后,课本提出了一个问题;“根据负整数指数幂的意义,你能用同底数幂的乘法性质推导出同底数幂除法的性质(am÷an=am-n,其中m、n是整数)吗?”.请你写出简单的推导过程: .
【答案】分析:首先理解题意,由负指数幂的性质,即可得am÷an=am•
=am•a-n,然后利用同底数幂的乘法运算法则,即可求得答案.
解答:解:am÷an=am•
=am•a-n=am+(-n)=am-n.
故答案为:am÷an=am•
=am•a-n=am+(-n)=am-n.
点评:此题考查了同底数幂的除法、同底数幂的除法的运算以及负指数幂的性质.注意掌握a-p=
.
解答:解:am÷an=am•
故答案为:am÷an=am•
点评:此题考查了同底数幂的除法、同底数幂的除法的运算以及负指数幂的性质.注意掌握a-p=
练习册系列答案
相关题目