题目内容
18+42÷(-2)-(-3)2×5.
将抛物线y=2(x﹣1)2+1向上平移3个单位,那么平移后得到的抛物线的解析式是__.
如图,已知一次函数y=-x+4的图象与反比例 (k为常数,且k≠0)的图象交于A(1,a),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)连接OA,OB,求△AOB的面积.
在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若小明首先抽签,则小明抽到2号跑道的概率是( )
A. B. C. D.
A市和B市分别有库存的某联合收割机12台和6台,现决定开往C市10台和D市8台,已知从A市开往C市、D市的油料费分别为每台400元和800元,从B市开往C市和D市的油料费分别为每台300元和500元.
(1)设B市运往C市的联合收割机为x台,求运费w关于x的函数关系式.
(2)若总运费不超过9000元,问有几种调运方案?
(3)求出总运费最低的调运方案,并求出最低运费.
如图,已知AD∥BC,AC与BD相交于点O,点G是BD的中点,过G作GE∥BC交AC于点E,如果AD=1,BC=3,GE:BC等于( )
A. 1:2 B. 1:3 C. 1:4 D. 2:3
如图所示,水杯的俯视图是( )
已知△ABC的外心为O,内心为I,∠BOC=120°,∠BIC=_______
如图,已知二次函数的图象经过A(3,0),B(0,1),C(2,2)三点.
(1)求二次函数的解析式;
(2)设点D(,m )在二次函数的图象上,将∠ACB绕点C按顺时针方向旋转至∠FCE,使得射线CE与轴的正半轴交于点E,且经过点D,射线CF与线段OA交于点F.求证:BE=2FO;
(3)是否存在点H(n,2),使得点A、D、H构成的△ADH是直角三角形?若存在,有几个符合条件的点H?(直接回答,不必说明理由)