题目内容

如图,点B、F、C、D在同一直线上,点A和点E分别在直线BD的两侧,且AB=ED,AC=EF,BF=DC,求证:AB∥DE.
考点:全等三角形的判定与性质,平行线的判定
专题:证明题
分析:根据题目条件证明△ACB≌△DFE,然后利用全等三角形的性质可以证明题目结论.
解答:证明:∵BF=DC,
∴BF+FC=DC+FC,
∴BC=DF,
在△ACB≌△DFE中,
AC=EF
AB=ED
BC=DF

∴△ACB≌△DFE(SSS),
∴∠B=∠D,
∴AB∥DE.
点评:本题考查了全等三角形的判定方法;此题比较简单,主要利用全等三角形的性质与判定解决题目问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网