题目内容
分析:根据AB是圆的直径,则△ABC是直角三角形,根据∠BAC=2∠B即可求得∠BAC的度数,证得△OAC是等边三角形.再根据PA是圆的切线,可以证得∠P=30°,则可求得OP的长,在直角△OAP中,利用勾股定理即可求得PA的长.
解答:解:∵AB为⊙O的直径
∴∠ACB=90°
∴∠B+∠BAC=90°
又∵∠BAC=2∠B
∴∠B=30°,∠BAC=60°
∵OA=OC
∴△OAC是等边三角形.
∴OA=AC=6,∠AOC=60°
∵AP是⊙O的切线.
∴∠OAP=90°
∴在直角△OAP中,∠P=90°-∠AOC=90°-60°=30°
∴OP=2OA=2×6=12,
∴PA=
=
=6
.
∴∠ACB=90°
∴∠B+∠BAC=90°
又∵∠BAC=2∠B
∴∠B=30°,∠BAC=60°
∵OA=OC
∴△OAC是等边三角形.
∴OA=AC=6,∠AOC=60°
∵AP是⊙O的切线.
∴∠OAP=90°
∴在直角△OAP中,∠P=90°-∠AOC=90°-60°=30°
∴OP=2OA=2×6=12,
∴PA=
| OP2-OA2 |
| 122-62 |
| 3 |
点评:本题主要考查了切线的性质定理,勾股定理以及直角三角形中,30度的锐角所对的直角边等于斜边的一半,正确证明△AOC是等边三角形是解决本题的关键.
练习册系列答案
相关题目