题目内容
已知二次函数
(a≠0)的图象如图所示,则下列说法:①
;②该抛物线的对称轴是直线x=-1;③当x=1时,y=2a;④
>0(
).其中正确的个数是
![]()
(A)1 (B)2 (C)3 (D)4
C
【解析】
试题分析:抛物线与y轴交于原点,
c=0,(故①正确);
该抛物线的对称轴是:
,
直线x=﹣1,(故②正确);
当x=1时,y=a+b+c
∵对称轴是直线x=﹣1,
∴﹣b/2a=﹣1,b=2a,
又∵c=0,
∴y=3a,(故③错误);
x=m对应的函数值为y=am2+bm+c,
x=﹣1对应的函数值为y=a﹣b+c,
又∵x=﹣1时函数取得最小值,
∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,
∵b=2a,
∴am2+bm+a>0(m≠﹣1).(故④正确).
故选:C
考点: 二次函数图象与系数的关系
练习册系列答案
相关题目
(14分)行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:
刹车时车速/km·h-1 | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
刹车距离/m | 0 | 0.3 | 1.0 | 2.1 | 3.6 | 5.5 | 7.8 |
(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;
(2)观察图象.估计函数的类型,并确定一个满足这些数据的函数解析式;
(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5 m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?