题目内容
如图,已知∠XOY=90°,等边三角形PAB的顶点P与O点重合,顶点A是射线OX上的一个定点,另一个顶点B在∠XOY的内部.(1)当顶点P在射线OY上移动到点P1时,连接AP1,请用尺规作图;在∠XOY内部作出以AP1为边的等边△AP1B1(要求保留作图痕迹,不要求写作法和证明);
(2)设AP1交OB于点C,AB的延长线交B1P1于点D.求证:△ABC∽△AP1D;
(3)连接BB1,求证:∠ABB1=90°.
【答案】分析:(1)分别以A、P1为圆心,AP1长为半径画弧,两弧交于B1点,△AP1B1即为所求;
(2)欲证△ABC∽△AP1D,必须有两组角相等,∠BAC=∠P1AD为一个公共角,又因为△PAB和△P1AB1都是正三角形,所以有∠ABC=∠AP1D=60°所以△ABC∽△AP1D;
(3)有(1)(2)可知AO=AB,AP1=AB1,∠PAB=∠P1AB1=60°,所以有∠OAP1=∠BAB1=60°-∠CAB,因此根据边角边公式可证△OAP1≌△BAB1,因此可得∠ABB1=∠AOP1=90°
解答:(1)解:等边三角形作图所如下;
(2)∵△PAB、△P1AB1是等边三角形,
∴∠ABC=∠AP1D=60°
,
又∵∠BAC=∠P1AD,
∴△ABC∽△AP1D.
(3)证明:
∵△PAB、△P1AB1是等边三角形,
∴∠BAP=∠P1AB1=60°,AB=AP,AB1=AP1.
∴∠BA B1=∠P1AP.
∴△BA B1≌△P1AP(SAS).
∴∠AB B1=∠P1 PA=90°.
点评:此题主要考查了相似的判定以及等边三角形的一些基本性质.
(2)欲证△ABC∽△AP1D,必须有两组角相等,∠BAC=∠P1AD为一个公共角,又因为△PAB和△P1AB1都是正三角形,所以有∠ABC=∠AP1D=60°所以△ABC∽△AP1D;
(3)有(1)(2)可知AO=AB,AP1=AB1,∠PAB=∠P1AB1=60°,所以有∠OAP1=∠BAB1=60°-∠CAB,因此根据边角边公式可证△OAP1≌△BAB1,因此可得∠ABB1=∠AOP1=90°
解答:(1)解:等边三角形作图所如下;
(2)∵△PAB、△P1AB1是等边三角形,
∴∠ABC=∠AP1D=60°
又∵∠BAC=∠P1AD,
∴△ABC∽△AP1D.
(3)证明:
∵△PAB、△P1AB1是等边三角形,
∴∠BAP=∠P1AB1=60°,AB=AP,AB1=AP1.
∴∠BA B1=∠P1AP.
∴△BA B1≌△P1AP(SAS).
∴∠AB B1=∠P1 PA=90°.
点评:此题主要考查了相似的判定以及等边三角形的一些基本性质.
练习册系列答案
相关题目