题目内容
图为一块在电脑屏幕上出现的色块图,由 6 个颜色不同的正方形拼成的长方形,如果中间最 小的正方形边长为 1,求所拼成的长方形的面积.
![]()
【考点】一元一次方程的应用.
【专题】几何图形问题.
【分析】由题可知,由于矩形色块图中全是正方形,则右下角两个小正方形一样大小,而顺时针方 向每个大正方形边长都增大 1,等量关系:边长都是旁边一个正方形边长+最小正方形边长.
【解答】解:设右下方两个并排的正方形的边长为 x, 则 x+2+x+3=x+1+x+x,
解得 x=4 所以长方形长为 3x+1=13 宽为 2x+3=11,
所以长方形面积为 13×11=143. 答:所拼成的长方形的面积为 143.
【点评】本题主要考查一元一次方程的应用的知识点,解题关键是要读懂题目的意思,根据题目给 出的条件,找出合适的等量关系,列出方程,再求解.
练习册系列答案
相关题目