题目内容

把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m、n,则二次函数y=x2+mx+n的图象与x轴没有公共点的概率是________.


分析:根据抛物线y=ax2+bx+c(a≠0)与x轴交点的情况由△=b2-4ac决定得到△<0,即m2-4n<0;然后利用列表展示所有36种等可能的结果,找到其中满足m2<4n有17种,
再根据概率的概念求解即可.
解答:∵二次函数y=x2+mx+n的图象与x轴没有公共点,
∴△<0,即m2-4n<0,
∴m2<4n,
列表如下:
n
m
123456
11,11,21,31,41,51,6
22,12,22,32,42,52,6
33,13,23,33,43,53,6
44,14,24,34,44,54,6
55,15,25,35,45,55,6
66,16,26,36,46,56,6
共有36种等可能的结果,其中满足m2<4n占17种,
所以二次函数y=x2+mx+n的图象与x轴没有公共点的概率=
故答案为
点评:本题考查了抛物线y=ax2+bx+c(a≠0)与x轴交点的情况由△=b2-4ac决定:当△>0,有两个交点;当△=0,有一个交点;当△<0,没有公共点.也考查了利用列表法求概率的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网