题目内容
【题目】如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
![]()
(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.
【答案】(1)
s(2)当t=
s时,S取得最大值,最大值为
cm2(3)不存在。理由见解析(4)存在,
cm2
【解析】
解:∵AB=10cm,AC=8cm,BC=6cm,
∴由勾股定理逆定理得△ABC为直角三角形,∠C为直角。
(1)BP=2t,则AP=10﹣2t.
若PQ∥BC,则
,即
,解得
。
∴当
s时,PQ∥BC。
(2)如图1所示,过P点作PD⊥AC于点D。![]()
则PD∥BC,∴△APD∽△ABC。
∴
,即
,解得
。
∴S=
×AQ×PD=
×2t×(
)
。
∴当t=
s时,S取得最大值,最大值为
cm2。
(3)不存在。理由如下:
假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,
则有S△AQP=
S△ABC,而S△ABC=
ACBC=24,∴此时S△AQP=12。
由(2)可知,S△AQP=
,∴
=12,化简得:t2﹣5t+10=0。
∵△=(
∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分。
(4)存在。
假设存在时刻t,使四边形AQPQ′为菱形,
则有AQ=PQ=BP=2t。
如图2所示,过P点作PD⊥AC于点D,![]()
则有PD∥BC,
∴△APD∽△ABC。
∴
,即
。
解得:PD=
,AD=
,
∴QD=AD﹣AQ=
。
在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(
)2+(
)2=(2t)2,
化简得:13t2﹣90t+125=0,解得:t1=5,t2=
。
∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=
。
由(2)可知,S△AQP=![]()
∴S菱形AQPQ′=2S△AQP=2×(
)=2×[﹣
×(
)2+6×
]=
。
∴存在时刻t=
,使四边形AQPQ′为菱形,此时菱形的面积为
cm2。
(1)由PQ∥BC时的比例线段关系,列一元一次方程求解。
(2)如图1所示,过P点作PD⊥AC于点D,得△APD∽△ABC,由比例线段,求得PD,从而可以得到S的表达式,然后利用二次函数的极值求得S的最大值。
(3)利用(2)中求得的△AQP的面积表达式,再由线段PQ恰好把△ABC的面积平分,列出一元二次方程;由于此一元二次方程的判别式小于0,则可以得出结论:不存在这样的某时刻t,使线段PQ恰好把△ABC的面积平分。
(4)根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,求得时间t的值;最后求菱形的面积,值得注意的是菱形的面积等于△AQP面积的2倍,从而可以利用(2)中△AQP面积的表达式,这样可以化简计算。
【题目】为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表。
组别 | 分数段 | 频次 | 频率 |
A | 60x<70 | 17 | 0.17 |
B | 70x<80 | 30 | a |
C | 80x<90 | b | 0.45 |
D | 90x<100 | 8 | 0.08 |
![]()
请根据所给信息,解答以下问题:
(1)表中a=___,b=___;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率。