题目内容
如图,四边形ABCD是的内接四边形,.
如图,求证:;
如图,点F是AC的中点,弦,交BC于点E,交AC于点M,求证:;
在的条件下,若DG平分,,,求的半径.
计算:______.
若是方程组的解,则a与c的关系是______.
如图,已知直线与轴、轴交点分别为、,另一直线经过,且把分成两部分.
(1)若被分成的两部分面积相等,求和的值.
(2)若被分成的两部分面积之比为,求和的值.
我们给出如下定义:如图①,平面内两条直线、相交于点O,对于平面内的任意一点M,若p、q分别是点M到直线和的距离(P≥0,q≥0),称有序非负实数对是点M的距离坐标。
根据上述定义,请解答下列问题:
如图②,平面直角坐标系xoy内,直线的关系式为,直线的关系式为,M是平面直角坐标系内的点。
(1)若,求距离坐标为时,点M的坐标;
(2)若,且,利用图②,在第一象限内,求距离坐标为时,点M的坐标;
(3)若,则坐标平面内距离坐标为时,点M可以有几个位置?并用三角尺在图③画出符合条件的点M(简要说明画法)。
先化简,再求值:,其中
分解因式:______.
小明的家离学校1600米,一天小明从家出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上他,已知爸爸的速度是小明速度的2倍,求小明的速度.
如图,在平面直角坐标系中,A(-3,-2),B(-1,-4)
(1)直接写出:S△OAB=__ _;
(2)延长AB交y轴于P点,求P点坐标;
(3)Q点在y轴上,以A,B,O,Q为顶点的四边形面积为6,求Q点坐标.