题目内容
C
C
处.分析:根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2012÷6=335…2,行走了335圈又两米,即落到C点.
解答:解:∵两个全等的等边三角形的边长为1m,
∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,
∵2012÷6=335…2,即正好行走了335圈又两米,回到第三个点,
∴行走2012m停下,则这个微型机器人停在C点.
故答案为:C.
∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,
∵2012÷6=335…2,即正好行走了335圈又两米,回到第三个点,
∴行走2012m停下,则这个微型机器人停在C点.
故答案为:C.
点评:本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2012为6的倍数余数是几.
练习册系列答案
相关题目