题目内容
腰长为4cm,底角为15°的等腰三角形的面积为
4
4
cm2.分析:作出图形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD=30°,再根据30°角所对的直角边等于斜边的一半可得CD=
AC,然后根据三角形的面积公式列式进行计算即可得解.
| 1 |
| 2 |
解答:
解:如图,过点C作CD⊥AB,角BA的延长线于D,
∵等腰三角形的底角为15°,
∴∠CAD=∠B+∠C=15°+15°=30°,
∴CD=
AC=
×4=2cm,
∴等腰三角形的面积=
AB•CD=
×4×2=4cm2.
故答案为:4.
∵等腰三角形的底角为15°,
∴∠CAD=∠B+∠C=15°+15°=30°,
∴CD=
| 1 |
| 2 |
| 1 |
| 2 |
∴等腰三角形的面积=
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:4.
点评:本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,等腰三角形的性质,熟记性质是解题的关键.
练习册系列答案
相关题目