题目内容

精英家教网已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为
 
分析:先用直角三角形的边长表示出阴影部分的面积,再根据勾股定理可得:AB2=AC2+BC2,进而可将阴影部分的面积求出.
解答:解:在Rt△ABC中,AB2=AC2+BC2,AB=3,
S阴影=S△AHC+S△BFC+S△AEB
=
1
2
×(
AC
2
)
2
+
1
2
×(
BC
2
)
2
+
1
2
×(
AB
2
)
2

=
1
4
(AC2+BC2+AB2
=
1
2
AB2
=
1
2
×32
=
9
2

故图中阴影部分的面积为
9
2
点评:本题主要是考查勾股定理的应用,比较简单.
注意:以直角三角形的两条直角边为斜边的两个等腰直角三角形的面积的和等于以斜边为斜边的等腰直角三角形的面积;等腰直角三角形的斜边是直角边的
2
倍.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网