题目内容
8名学生的平均成绩是x,如果另外2名学生每人得84分,那么整个组的平均成绩是( )
A. B. C. D.
若a=1,b=1,c=-1,则=____.
在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.
(1)若点D在线段BC上,如图1.
①依题意补全图1;
②判断BC与CG的数量关系与位置关系,并加以证明;
(2)若点D在线段BC的延长线上,且G为CF中点,连接GE,AB=,则GE的长为_____,并简述求GE长的思路.
计算:(a﹣)•= .
如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是( )
A. 点A B. 点B C. 点C D. 点D
已知任意三角形ABC,
(1)如图1,过点C作DE∥AB,求证:∠DCA=∠A;
(2)如图1,求证:三角形ABC的三个内角(即∠A、∠B、∠ACB)之和等于180°;
(3)如图2,求证:∠AGF=∠AEF+∠F;
(4)如图3,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.
为了解各年龄段观众对某电视节目的收视率,小明调查了部分观众的收视情况,并分成A,B,C,D,E,F六组进行调查,其频率分布直方图如图所示,各长方形上方的数据表示该组的频率,若E组的频数为48,那么被调查的观众总人数为____________.
从鱼塘捕获同时放养的鲤鱼120条,从中任选8条称得每条鱼的质量分别是:1.4,1.7,1.5,1.4,1.4,1.2,1.7,1.7(单位:千克),那么估计这120条鱼的总质量大约为( )
A. 180 B. 200 C. 18 D. 20
配方法是中学数学的重要方法,用配方法可求最大(小)值.如对于任意正实数a,x,有,因为,所以≥2(当x=时取等号).由上述结论可知:函数y=x+(a>0,x>0),当x=时,有最小值为2.已知函数y1=2x(x>0)与函数y2=(x>0),则y1+y2的最小值为__.