题目内容
【题目】如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.
![]()
(1)求证:△ADE≌△BEC;
(2)若AD=3,AB=9,求△ECD的面积.
【答案】(1)见解析;(2)![]()
【解析】
(1)根据已知可得到∠A=∠B=90°,DE=CE,AD=BE从而利用HL判定两三角形全等;
(2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC=90°,由已知我们可求得BE、AE的长,再利用勾股定理求得ED的长,利用三角形面积公式解答即可.
(1)∵AD∥BC,∠A=90°,∠1=∠2,
∴∠A=∠B=90°,DE=CE.
∵AD=BE,
在Rt△ADE与Rt△BEC中
,
∴Rt△ADE≌Rt△BEC(HL)
(2)由△ADE≌△BEC得∠AED=∠BCE,AD=BE.
∴∠AED+∠BEC=∠BCE+∠BEC=90°.
∴∠DEC=90°.
又∵AD=3,AB=9,
∴BE=AD=3,AE=9﹣3=6.
∵∠1=∠2,
∴ED=EC=
=
=3
,
∴△CDE的面积=
.
练习册系列答案
相关题目