题目内容
如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为( )
A. B. C. D.6
若直线y=mx+2m-3经过二、三、四象限,则m的取值范围是( )
A.m< B.m>0 C.m> D.m<0
已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果:
①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,
则正确的结论是( )
A.①②③④ B.②④⑤ C.②③④ D.①④⑤
小明妈妈,每天需赶头班公交车,驶往终点站.离他家最近的公交站点离终点站15km,一天他妈妈从家步行到公交站点,恰好赶上头班公交车,上车后才发现有重要物品落在家中,急忙通知小明将物品送到终点站,这时妈妈已上车5min,小明马上取了东西,用时6min赶到妈妈上车的公交站点,乘坐刚好路过的出租车,沿公交车的线路驶往公交车的终点站,结果比公交车早4min到达,出租车与小明一起等候公交车.若公交车,出租车均视为全程匀速行驶,出租车的速度为60km/h(即:1km/min).设妈妈所乘公交车离开她上车的站点的时间为t(min),小明上车后,小明所乘出租车距妈妈上车的公交站点的路程为S1(km),妈妈所乘的公交车与小明所乘出租车之间相距的路程为S(km)
(1)求S1与t之间的函数关系式,并写出t的取值范围;
(2)写出11≤t≤30,S与t之间的函数关系式;
(3)公交车到达终点之前,经多长时间两车相距500m.
如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF= 度.
用配方法解关于x的方程x2+mx+n=0,此方程可变形为( )
A.
B.
C.
D.
|-|=( )
A.- B. C. D.-
如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )
A.120° B.90° C.60° D.30°
先化简,再求值:,其中a,b满足=0.