题目内容
【题目】如图,点A、B、C、P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为( )
![]()
A.70°B.60°C.40°D.35°
【答案】A
【解析】
题目所求是∠P,观察分析图可知∠AOB和∠P分别是弧AB所对的圆心角和圆周角;
根据圆周角定理有:一条弧所对的圆心角是圆周角的两倍;
由于∠CDO和∠CEO都为90°,∠DCE已知,则易求∠DOE也就是∠AOB的度数;
求出∠AOB的度数后,由圆周角定理就容易求出∠P的度数了.
∵CD⊥OA,CE⊥OB,
∴∠CDO=∠CEO=90°.
又∵∠DCE=40°,
∴∠AOB=∠DOE=360°-90°-90°-40°=140°.
由圆周角定理可知:∠P=
∠AOB=70°.
∴选A
练习册系列答案
相关题目
【题目】若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数
的图象与性质.列表:
x | … |
|
|
|
|
|
| 0 |
| 1 |
| 2 |
| 3 | … |
y | … |
|
| 1 |
| 2 |
| 1 |
| 0 |
| 1 |
| 2 | … |
描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.
![]()
(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;
(2)研究函数并结合图象与表格,回答下列问题:
①点
,
,
,
在函数图象上,
,
;(填“>”,“=”或“<”)
②当函数值
时,求自变量x的值;
③在直线
的右侧的函数图象上有两个不同的点
,
,且
,求
的值;
④若直线
与函数图象有三个不同的交点,求a的取值范围.