题目内容
实数x、y、z满足x+y+z=5,xy+yz+zx=3,则z的最大值是________.
分析:把x,y看成是一元二次方程的两个实数根,根据根与系数的关系列出一元二次方程,然后由判别式得到z的取值范围,求出z的最大值.
解答:∵x+y=5-z,xy=3-z(x+y)=3-z(5-z)=z2-5z+3,
∴x、y是关于t的一元二次方程t2-(5-z)t+z2-5z+3=0的两实根.
∵△=(5-z)2-4(z2-5z+3)≥0,即3z2-10z-13≤0,
(3z-13)(z+1)≤0.
∴-1≤
当
故z的最大值为
故答案为:
点评:本题考查的是一元二次方程根与系数的关系,根据根与系数的关系列出一元二次方程,然后由判别式求出z的取值范围,确定z的最大值.
练习册系列答案
相关题目
已知实数a、b、c满足a-b+c=0,那么关于x的方程ax2+bx+c=0一定有根( )
| A、x=1 | B、x=-1 | C、x=±1 | D、都不对 |
已知方程x2+(2k+1)x+k-1=0的两个实数根x1,x2满足x1-x2=4k-1,则实数k的值为( )
| A、1,0 | ||
| B、-3,0 | ||
C、1,-
| ||
D、1,-
|