题目内容
若实数x,y,z满足:| xy |
| x+2y |
| yz |
| y+2z |
| zx |
| z+2x |
分析:运用倒数法把已知变形,解方程组即可.
解答:解:由已知得
=1,即
+
=1①,
同理得
+
=
②,
+
=
③,
①+②+③得
+
+
=
④,
④-②得
-
=
,
与①相加得
=
解得x=
.
故答案为:
.
| x+2y |
| xy |
| 2 |
| x |
| 1 |
| y |
同理得
| 2 |
| y |
| 1 |
| z |
| 1 |
| 2 |
| 2 |
| z |
| 1 |
| x |
| 1 |
| 3 |
①+②+③得
| 1 |
| x |
| 1 |
| y |
| 1 |
| z |
| 11 |
| 18 |
④-②得
| 1 |
| x |
| 1 |
| y |
| 1 |
| 9 |
与①相加得
| 3 |
| x |
| 10 |
| 9 |
解得x=
| 27 |
| 10 |
故答案为:
| 27 |
| 10 |
点评:本题考查了分式等式的变形运算.利用“倒数法”将已知变形,解方程组是解题的关键.
练习册系列答案
相关题目