题目内容
如图,⊙O中,AB、AC是弦,O在∠BAC的内部,∠ABO=α,∠ACO=β,∠BOC=θ,则下列关系式中,正确的是
- A.θ=α+β
- B.θ=2α+2β
- C.θ+α+β=180°
- D.θ+α+β=360°
B
分析:过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出θ=2α+2β.
解答:
解:过A作⊙O的直径,交⊙O于D;
△OAB中,OA=OB,则∠BOD=∠OBA+∠OAB=2α;
同理可得:∠COD=∠OCA+∠OAC=2β;
∵∠BOC=∠BOD+∠COD,
∴θ=2α+2β;
故选B.
点评:此题主要考查的是等腰三角形的性质及三角形的外角性质.
分析:过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出θ=2α+2β.
解答:
△OAB中,OA=OB,则∠BOD=∠OBA+∠OAB=2α;
同理可得:∠COD=∠OCA+∠OAC=2β;
∵∠BOC=∠BOD+∠COD,
∴θ=2α+2β;
故选B.
点评:此题主要考查的是等腰三角形的性质及三角形的外角性质.
练习册系列答案
相关题目