题目内容
关于的方程的解与方程的解相同,则的值是( )
A. B. C. D.
对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是( )
A. 开口向下 B. 对称轴是x=﹣1
C. 顶点坐标是(1,2) D. 与x轴有两个交点
如果单项式3xa+2yb﹣2与5x3ya+2的和为8x3ya+2,那么a﹣b=_____.
如图,平面上有四个点A,B,C,D.
(1)根据下列语句画图:
①射线BA;
②直线AD,BC相交于点E;
③在线段DC的延长线上取一点F,使 CF=BC,连接EF.
(2)图中以E为顶点的角中,小于平角的角共有 ________个.
57.32? = _______(________________)' ______ "
如果是同类项,那么m+n的值为( )
A. 5 B. 6 C. 7 D. 8
(12分)理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:
思路一 如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===.
思路二 利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===.
思路三 在顶角为30°的等腰三角形中,作腰上的高也可以…
思路四 …
请解决下列问题(上述思路仅供参考).
(1)类比:求出tan75°的值;
(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;
(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.
一个几何体的三视图如图所示,这个几何体是( )
A. 棱柱 B. 正方形 C. 圆柱 D. 圆锥
若正方形的外接圆直径为4,则其内切圆半径为_____.