题目内容
对于有理数、,定义⊙,则[(x+y) ⊙(x-y)] ⊙3x化简后得( )
A. B. C.0 D.
(2015秋•兴化市校级月考)如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,
(1)求直线l2的解析式;
(2)求△ADC的面积;
(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;
(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC
(2)若AB=4,AD=3,AE=3,求AF的长.
如下图,有一个正方体纸盒,在它的三个侧面分别画有三角形、正方形和五边形,现用一把剪刀沿着它的棱剪开成一个平面图形,则展开图是( )
在给出的一组数0,,,3.14,,中,无理数有( )
A.1个 B.2个 C.3个 D.5个
如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C',且BC'与AD交于E点,若则 °
“x的2倍与3的差不小于1”用不等式表示为: .
在平面直角坐标系中,已知A(1,1)、B(3,5),要在x轴上找一点P,使得△PAB的周长最小,则点P的坐标为 .
已知面包店的面包一个8元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜16元”,小明说:“我买这些就好了,谢谢”,根据两人的对话,判断结账时小明买了多少个面包?