题目内容


如图,直线AB与CD相交于点D,OE⊥AB,OF⊥CD.

(1)图中∠AOF的余角有__________;(把符合条件的角都填出来)

(2)如果∠AOD=140°,那么根据__________,可得∠BOC=__________度;

(3)∠EOF=∠AOD,求∠EOF的度数.


       解:(1)图中∠AOF的余角有∠EOF,∠AOC,∠BOD;(把符合条件的角都填出来)

(2)如果∠AOD=140°,那么根据 对顶角相等,可得∠BOC=140度;

故答案为:∠EOF,∠AOC,∠BOD;对顶角相等,140;

(3)∵∠EOF+AOF=90°,∠AOC+∠AOF=90°,

∴∠EOF=∠AOC=∠BOD.

∵∠AOD+∠BOD=180°,∠EOF=∠AOD

∴5∠EOF+∠BOD=180°,

即6∠EOF=180°,

∠EOF=30°.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网