题目内容
已知二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.
(2015秋•岑溪市期末)方程组的解是,则a+b= .
(2015秋•重庆校级期中)某工程队修建一条总长为1860米的公路,在使用旧设备施工17天后,为尽快完成任务,工程队引进了新设备,从而将工作效率提高了50%,结果比原计划提前15天完成任务.
(1)工程队在使用新设备后每天能修路多少米?
(2)在使用旧设备和新设备工作效率不变的情况下,工程队计划使用旧设备m天,使用新设备n(16≤n≤26)天修建一条总长为1500米的公路,使用旧设备一天需花费16000元,使用新设备一天需花费25000元,当m、n分别为何值时,修建这条公路的总费用最少,并求出最少费用.
(2015秋•重庆校级期中)九年级(1)班姜玲同学某周7天进行自主复习时间(单位:分钟)如下:50,60,80,90,60,70,60.这组数据的众数是( )
A.90 B.80 C.70 D.60
”双十一“淘宝网销售一款工艺品,每件的成本是50元.销售期间发现,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.设当销售单价为x元,每天的销售利润为y元.
(1)求出y与x之间的函数表达式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要 元?(每天的总成本=每件的成本×每天的销售量)
如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为 .
如图,CD垂直平分半径OB,垂足为P点,CD=12,则OB=( )
A.2 B.4 C.4 D.8
如图,△ABC内接于⊙O,∠C=45°,AB=2,则⊙O的半径为 .
(2015秋•惠山区期末)如图①,ABCD是边长为60cm的正方形硬纸片,切去四个全等的等腰直角三角形(阴影部分所示),其中E,F在AB上;再沿虚线折起,点A,B,C,D恰好重合于点O处(如图②所示),形成有一个底面为正方形GHMN的包装盒,设AE=x (cm).
(1)求线段GF的长;(用含x的代数式表示)
(2)当x为何值时,矩形GHPF的面积S (cm2)最大?最大面积为多少?
(3)试问:此种包装盒能否放下一个底面半径为15cm,高为10cm的圆柱形工艺品,且使得圆柱形工艺品的一个底面恰好落在图②中的正方形GHMN内?若能,请求出满足条件的x的值或范围;若不能,请说明理由.