题目内容
△ABC中,∠C=90°,AD为角平分线,BC=64,BD:DC=9:7,求D到AB的距离。
A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD;这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法共有( )
A. 3种 B 4种 C 5种 D 6种
如图,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由。
(2)如图2,∠BEF与∠EFD的角平分线交于点P.EP与CD交与点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH.
(3)如图3在(2)的条件下连结PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变请求出其值.若变化说明理由.
如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )
A. 右转80° B. 左转80° C. 右转100° D. 左转100°
下列四个图形中,不能推出∠2与∠1相等的是
A. B. C. D.
如图,在Rt△ABC中,∠C=90°,AC=18,BC=7,AB=PQ,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=__时,△ABC和△PQA全等.
如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是( )
A. SSS B. SAS C. ASA D. AAS
如图,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度,斜坡BD的长是50米,在山坡的坡底B处测得铁架顶端A的仰角为,在山坡的坡顶D处测得铁架顶端A的仰角为,(1)求小山的高度;(2)求铁架的高度。(结果保留根号)
下列四个分式中,是最简分式的是( )