题目内容


如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.

(1)求证:AG与⊙O相切.

(2)若AC=6,AB=8,BE=3,求线段OE的长.


(1)证明:如图,

连接OA,

∵OA=OB,GA=GE

∴∠ABO=∠BAO,∠GEA=∠GAE

∵EF⊥BC,

∴∠BFE=90°,

∴∠ABO+∠BEF=90°,

又∵∠BEF=∠GEA,

∴∠GAE=∠BEF,

∴∠BAO+∠GAE=90°,

即AG与⊙O相切.

(2)解:∵BC为直径,

∴∠BAC=90°,AC=6,AB=8,

∴BC=10,

∵∠EBF=∠CBA,∠BFE=∠BAC,

∴△BEF∽△BCA,

==

∴EF=1.8,BF=2.4,

∴0F=0B﹣BF=5﹣2.4=2.6,

∴OE==

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网