题目内容
如果a=2003x+2001,b=2003x+2002,c=2003x+2003,那么代数式a2+b2+c2-ab-ac-bc的值等于______.
∵a=2003x+2001,b=2003x+2002,c=2003x+2003
∴a-b=-1,b-c=-1,a-c=-2
∴a2+b2+c2-ab-ac-bc
=
(2a2+2b2+2c2-2ab-2ac-2bc )
=
[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]
=
[(a-b)2+(b-c)2+(a-c)2]
=
(1+1+4)
=3
故答案为3
∴a-b=-1,b-c=-1,a-c=-2
∴a2+b2+c2-ab-ac-bc
=
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
=3
故答案为3
练习册系列答案
相关题目