题目内容
如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连接PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是( )
![]()
A. 8 B. 10 C. 3π D. 5π
A解:连结DE,作FH⊥BC于H,如图,
∵△ABC为等边三角形,
∴∠B=60°,
过D点作DE′⊥AB,则BE′=
BD=2,
∴点E′与点E重合,
∴∠BDE=30°,DE=
BE=2
,
∵△DPF为等边三角形,
∴∠PDF=60°,DP=DF,
∴∠EDP+∠HDF=90°,
∵∠HDF+∠DFH=90°,
∴∠EDP=∠DFH,
在△DPE和△FDH中,
,
∴△DPE≌△FDH,
∴FH=DE=2
,
∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为2
,
当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,
当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则△DF2Q≌△ADE,所以DQ=AE=10﹣2=8,
∴F1F2=DQ=8,
∴当点P从点E运动到点A时,点F运动的路径长为8.
![]()
练习册系列答案
相关题目