题目内容
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2.
(1)求抛物线的解析式;
(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当
时,求k的值;
(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.
(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=
)
![]()
【答案】(1)抛物线解析式为y=
x2+x;(2)k=1;(3)P(﹣2
,﹣2
+2).
【解析】(1)先利用对称轴公式得出b=4a,进而利用待定系数法即可得出结论;
(2)先利用根与系数的关系得出,x1+x2=4(k﹣1),x1x2=﹣16,转化已知条件,代入即可得出结论;
(3)先判断出OB=2PQ,进而判断出点C是OB中点,再求出AB解析式,判断出PC∥AB,即可得出PC解析式,和抛物线解析式联立解方程组即可得出结论.
(1)根据题意得,
,
∴
,
∴抛物线解析式为y=
x2+x;
(2)∵直线y=kx+4与抛物线两交点的横坐标分别为x1,x2,
∴
x2+x=kx+4,
∴x2﹣4(k﹣1)x﹣16=0,
根据根与系数的关系得,x1+x2=4(k﹣1),x1x2=﹣16,
∵
,
∴2(x1﹣x2)=x1x2,
∴4(x1﹣x2)2=(x1x2)2,
∴4[(x1+x2)2﹣4x1x2]=(x1x2)2,
∴4[16(k﹣1)2+64]=162,
∴k=1;
(3)如图,取OB的中点C,
∴BC=
OB,
∵B(4,8),
∴C(2,4),
∵PQ∥OB,
∴点O到PQ的距离等于点O到OB的距离,
∵S△POQ:S△BOQ=1:2,
∴OB=2PQ,
∴PQ=BC,∵PQ∥OB,
∴四边形BCPQ是平行四边形,
∴PC∥AB,
∵抛物线的解析式为y=
x2+x①,
令y=0,
∴
x2+x=0,
∴x=0或x=﹣4,
∴A(﹣4,0),
∵B(4,8),
∴直线AB解析式为y=x+4,设直线PC的解析式为y=x+m,
∵C(2,4),
∴直线PC的解析式为y=x+2②,
联立①②解得,
(舍)或
,
∴P(﹣2
,﹣2
+2).
![]()
【题目】为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)
自来水销售价格 | 污水处理价格 | |
每户每月用水量 | 单价:元/吨 | 单价:元/吨 |
17吨及以下 | a | 0.80 |
超过17吨不超过30吨的部分 | b | 0.80 |
超过30吨的部分 | 6.00 | 0.80 |
已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.
(1)求a,b的值.
(2)小王家6月份交水费184元,则小王家6月份用水多少吨?