题目内容
![]()
(1)求函数y1的表达式和点B的坐标;
(2)观察图象,比较当x>0时y1与y2的大小.![]()
(1)由题意,得
解得
∴![]()
又A点在函数
上,所以
,解得
所以![]()
解方程组
得
![]()
所以点B的坐标为(1, 2)
(2)当0<x<1或x>2时,y1<y2;
当1<x<2时,y1>y2;
当x=1或x=2时,y1=y2.
解析
练习册系列答案
相关题目
已知一次函数y1=2x,二次函数y2=x2+1.
(Ⅰ)根据表中给出的x的值,计算对应的函数值y1、y2,并填在表格中:
(Ⅱ)观察第(Ⅰ)问表中有关的数据,证明如下结论:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1≤y2均成立;
(Ⅲ)试问,是否存在二次函数y3=ax2+bx+c,其图象经过点(-5,2),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≤y3≤y2均成立?若存在,求出函数y3的解析式;若不存在,请说明理由.
(Ⅰ)根据表中给出的x的值,计算对应的函数值y1、y2,并填在表格中:
| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| y1=2x | |||||||
| y2=x2+1 |
(Ⅲ)试问,是否存在二次函数y3=ax2+bx+c,其图象经过点(-5,2),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≤y3≤y2均成立?若存在,求出函数y3的解析式;若不存在,请说明理由.