题目内容
【题目】投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.
(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;
(2)若菜园面积为384 m2,求x的值;
(3)求菜园的最大面积.
![]()
【答案】(1)x=18;(2) 416 m2.
【解析】
(1)根据“
÷2”可得函数解析式;
(2)根据矩形的面积公式列方程求解可得;
(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得.
(1)根据题意知,y=
=-
x+
;
(2)根据题意,得(-
x+
)x=384,
解得x=18或x=32.
∵墙的长度为24 m,∴x=18.
(3)设菜园的面积是S,则S=(-
x+
)x=-
x2+
x=-
(x-25)2+
.
∵-
<0,∴当x<25时,S随x的增大而增大.
∵x≤24,
∴当x=24时,S取得最大值,最大值为416.
答:菜园的最大面积为416 m2.
练习册系列答案
相关题目