题目内容
计算:﹣13﹣+6sin60°+(π﹣3.14)0+|﹣|
原式=﹣1﹣3+6×+1+=.解:
某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.例如,第一个月用水16吨,需交水费17.8元,第二个月用水20吨,需交水费23元.
(1)求每吨水的基础价和调节价;
(2)设每月用水量为n吨,应交水费为m元,写出m与n之间的函数解析式;
(3)若某月用水12吨,应交水费多少元?
如图6,在矩形ABCD中,对角线AC,BD 相交于点O,E是边AD的中点, 图5
若AC=10,DC=2,则BO= ,∠EBD的大小约为
度 分.(参考数据:tan26°34′≈)
一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是( )
A. B. C. D.
把96000用科学记数法表示为 .
阅读下列材料,并用相关的思想方法解决问题.
计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).
令++=t,则
原式=(1﹣t)(t+)﹣(1﹣t﹣)t
=t+﹣t2﹣t﹣t+t2
=
问题:
(1)计算
(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);
(2)解方程(x2+5x+1)(x2+5x+7)=7.
下列图形中,不是中心对称图形的为( )
A. 圆 B. 正六边形 C. 正方形 D. 等边三角形
近年来,“在初中数学教学中使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了若干名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和统计图:
学生对使用计算器影响计算能力发展的看法统计表
看法 没有影响 影响不大 影响很大
学生人数 100 60 m
根据以上图表信息,解答下列问题:
(1)统计表中的m= ;
(2)统计图中表示“影响不大”的扇形的圆心角度数为 度;
(3)从这次接受调查的学生中随机调查一人,恰好是持“影响很大”看法的概率是多少?
图中是对顶角量角器,用它测量角的原理是 .