题目内容
20.将一把三角尺的直角顶点P放在正方形ABCD的对角线AC上滑动,一条直角边始终经过点B,另一条直角边于DC所在的直线相交于Q.(1)当点Q在边DC上时,如图1,求证:BP=QP;
(2)当点Q在边DC的延长线上时,如图,(1)中的结论还成立吗?如果不成立,请说明理由;如果成立,请给予证明.
分析 (1)过点P作正方形对边CD、AB的垂线垂足为M、N,可以证明△PMQ≌△BNP,从而得出BP=QP;
(2)过点P作正方形对边CD、AB的垂线垂足为M、N,可以证明△PMQ≌△BNP,从而得出BP=QP.
解答
证明:(1)如图1,过点P作PN⊥AB于N,PN交CD于点M,
在正方形ABCD中,AB∥CD,∠ACD=45°
∴∠PMQ=∠PNB=∠CBN=90°,
∴CBNM是矩形,
∴CM=BN,
∴△CMP是等腰直角三角形,
∴PM=CM=BN,
∵∠PBN+∠BPN=90°,∠BPN+∠MPQ=90°,
∴∠MPQ=∠PBN,
在△PMQ和△BNP中,
$\left\{\begin{array}{l}{∠MPQ=∠PBN}\\{∠PNB=∠PMQ=90°}\\{BN=PM}\end{array}\right.$,
∴△PMQ≌△BNP,(AAS)
∴BP=QP;
(2)成立;![]()
理由:如图2,过点P作PN⊥AB于N,PN交CD于点M,
在正方形ABCD中,AB∥CD,∠ACD=45°
∴∠PMQ=∠PNB=∠CBN=90°,
∴CBNM是矩形,
∴CM=BN,
∴△CMP是等腰直角三角形,
∴PM=CM=BN,
∵∠PBN+∠BPN=90°,∠BPN+∠MPQ=90°,
∴∠MPQ=∠PBN,
在△PMQ和△BNP中,
$\left\{\begin{array}{l}{∠MPQ=∠PBN}\\{∠PNB=∠PMQ=90°}\\{BN=PM}\end{array}\right.$,
∴△PMQ≌△BNP(AAS),
∴BP=QP.
点评 本题考查了正方形的性质,等腰三角形的判定和性质,矩形的判定和性质,三角形全等的判定和性质;解答本题时充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚正方形对角线上点的特点,正方形中的三角形的三边关系,有助于提高解题能力.