题目内容
;
-
【答案】60°。
【考点】平行线的性质;三角形的外角性质.
【分析】利用三角形的一个外角等于与它不相邻的两个内角的和求出∠3的同位角的度数,再根据两直线平行,同位角相等即可求解.
【解答】如图,∵∠1=130°,∠2=70°,
∴∠4=∠1-∠2=130°-70°=60°,
∵a∥b,
∴∠3=∠4=60°.
故答案为:60°.
【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,准确识图,理清图中各角度之间的关系是解题的关键.
观察下列各式及验证过程:
验证:
=验证:
(1)按照上述三个等式及其验证过程的基本思路,猜想的变形结果并进行验证;
(2)针对上述各式反映的规律,写出用n(n≥2的自然数)表示的等式,并进行验证.
先阅读下面的解题过程:
∵------①,而------②, ∴------③,以上推导错误的一步是( ).
A.① B.② C.③ D.没有错误.
x2-4x+1=0
实数a,b在数轴上的位置如图,那么化简的结果是( )
A:2a-b B:b C:-b D:-2a+b
比较大小:(填“>”“<”或“=” )
.
如果a是(-3)2的平方根,那么等于( )
A.-3 B.- C.±3 D.或-